High Pressure NMR Studies of Hemoproteins.
The Effect of Pressure on the Quaternary Structure of Hemoglobin

Isao Morishima and Mitsunobu Hara

Division of Molecular Engineering, Graduate School of Engineering, Kyoto University, Kyoto 606, Japan

Received February 24, 1984

Proton NMR spectra for nitrosyl-, aquomet- and des-Arg(\alpha 141)-hemoglobin in H2O were studied at high pressures up to 1400 atm with attention to the exchangeable proton resonances due to the intra- and intersubunit hydrogen For aquomethemoglboin, the T state marker signal at 6.4 ppm is insensitive to pressure while the R state marker signal at 6.0 ppm exhibits progressive upfield shift upon pressurization. For nitrosylhemoglobin, the T state signals at 9.6 and 6.5 ppm decrease their intensities upon pressurization while the R state marker signal at 6.0ppm remains unchanged. Pressure-induced spectral changes for some of exchangeable resonances are also encountered for deoxy des-Arg $(\alpha 141)$ -hemoglobin while the R and 9.4 ppm structural indicators at 6.0 and quaternary insensitive to pressure. These pressure-induced spectral these hemoglobin derivatives are significantly distinguished from those associated with the R-T transition induced by addition by variatioon of pH. It is therefore concluded that pressure induces subtle quaternary structural changes in hemoglobin derivatives without causing the R-T transition.

The structure of hemoglobin(Hb) is often represented by a simple model based on the T(tensed) and R(relaxed) quaternary structures which are in equilibrium depending on whether the heme iron is ligated(R) or unligated(T), presence or absence of the allosteric effector such as inositol hexaphosphate(IHP) and on pH etc. We have been interested in the effect of pressure on the quaternary structure of Hb with the idea that pressure might affect the R-T equilibrium if the volumes of these two states are different.

By the use of high pressure NMR spectroscopy (1), we have previously studied the pressure effect on the tertiary and quaternary structures of oxy-, carbonmonoxy- and deoxyhemoglobin

(HbO2, HbCO and deoxyHb) where either R or T $\,$ state $\,$ predominates the tertiary structure of these Hb's is and revealed that their substantially changed in heme environments upon pressurization, while the quaternary pressure-independent (2). For these Hb derivatives, the exchangeable proton resonances due to the intra- and intersubunit hydrogen bonds which have been used as the R and T structural probes were not changed upon pressurization. On the other hand, β valine γ_1 -methyl signal for HbO₂ and HbCO hyperfine-shifted heme and proximal histidyl NH resonances for the β subunit of deoxyHb are much affected by pressure.

To gain further insight into the relation pressure-induced structural changes and the quaternary structural (R-T) transition, we have extended the high pressure NMR studies hemoglobin derivatives which are in slightly different quaternary conformation from HbOo, HbCO and deoxyHb. We wish to report here the NMR evidence that pressure affects the quaternary structures of nitrosyl-, aquometand deoxy des-Arg(α 141)-hemoglobin (HbNO, HbH₂O and deoxy des-Arg(α 141)-Hb) where in contast to HbO2, HbCO and deoxyHb both R and T forms are populated at an appropriate pH and R to T quaternary transition is readily induced by addition of IHP or by variation of pH (3-17).

Human adult hemoglobin was prepared MATERIALS AND METHODS in the usual manner from fresh whole blood obtained from the normal individual. Organic phosphate was removed according to the method of Berman et al. (18). Methemoglobin was prepared by mixing oxyhemoglobin with 1.2 mol ratio of pottasium ferricyanide. The G-25 passed mixture was through a sephadex Nitrosylhemoglobin was prepared by adding sodium dithionite to the mixture of deoxyhemoglobin and sodium nitrite. Excess NO was by flushing with dry nitrogen. Des-Arg(α141)-Hb was prepared as previously reported (15).

We used 0.1M Tris-HCl and bis-Tris buffer throughout the present high pressure NMR study, because the pH of these buffers has been shown to be independent of pressure (19,20). The pH value was a direct reading of the pH mater(Radiometer) equipped with a microelectrode(Ingold).

A simple device for the high pressure NMR measurements and experimental details are described in our previous reports(1). Proton NMR spectra at 300MHz were recorded at 30°C on a Nicolet NT-300 spectrometer equipped with a 1280 computer system. We used a Redfield 2-1-X pulse sequence with $28.9\mu s$ pulse and 4K data points over 6KHz spectral width. The carrier frequency was placed at 3KHz downfield from the water proton resonance. The spectra at atm were obtained with a usual 5-mm sample tube with spinning. Proton shifts were referenced with respect to the water proton signal, which was insensitive to pressure in its chemical shift internal reference, DSS 2.2 dimethyl-2-silapentane-5-sulfonate).

RESULTS AND DISCUSSION We studied proton NMR of HbNO. HbH₂O and deoxy des-Arg(\alpha 141)-Hb in H₂O under pressure with attention to the resonances οſ the exchangeable protons associated with hydrogen bonds in the subunit interface. These resonances have been established to serve as the sensitive probe for quaternary structures of Hb (8-10).

Fig. 1a shows the pressure-dependence of the exchangeable proton resonances for HbH₂O at pH 6.5 in O.1M bis-Tris buffer.

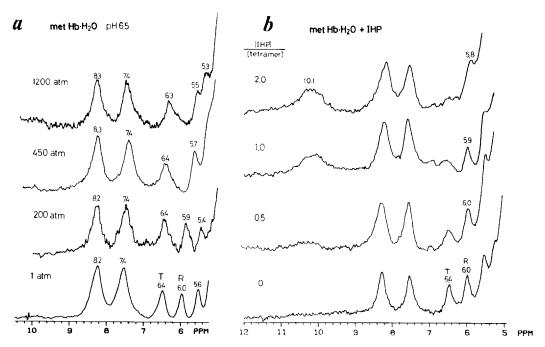
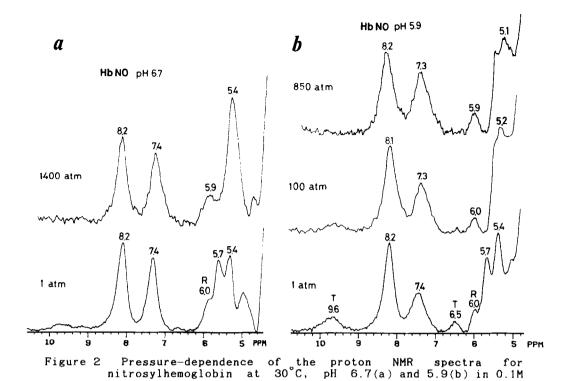



Figure 1 NMR spectra of aquomethemoglobin at various pressures in the absence of IHP(a) and at 1 atm with various amounts of (b). All spectra were taken at 30°C. Samples were buffered at pH 6.5 in 0.1M bis-Tris.

The signal at 6.4 ppm, which arises from the intrasubunit hydrogen bond between $\beta98(FG5)$ valine and $\beta145(HC2)$ tyrosine and has been assigned as a deoxy-like(T) quaternary state marker (21), is insensitive to pressure. However, the resonance at 6.0 ppm, which has been utilized as an indicator for the oxy-like(R) quaternary state, exhibits progressive upfield shift with increasing pressure. It is therefore likely that pressure-induced quaternary structural changes occur in such a way that the hydrogen bond involved in the R state of HbH2O is weakened, but not completely ruptured. The exchangeable resonance at 5.6 ppm, which experiences similar pressure-induced upfield shift, may reflect such a quaternary structural change upon pressurization.

It seems interesting to compare pressure-induced spectral changes with IHP-induced ones for HbH₂O. As Fig.1b shows, the T state marker signal at 6.4 ppm gradually decreases its signal intensity with successive addition of IHP and concomitantly a new exchangeable proton peak grows up at 10.1 ppm (10,11), which may correspond to the T state marker signal observed at 9.4 ppm for deoxyHb (11). This is in accord with the well established result that the binding of IHP to HbH₂O shifts the R-T equilibrium toward the T state (10-14). It is also suggested that IHP perturbs the hydrogen bond involved in the R structure, as is evidenced by the IHP-induced upfield shift for the R state marker signal at 6.0 ppm. Since pressure did not induce the T state marker signal which should be observed at 10.1 ppm, but rather affected the R state signal at 6.0 ppm as did IHP, it is then concluded that pressure induces subtle quaternary structural changes in HbH₂O without switching its quaternary conformation to the T state.

In Fig. 2 are shown the exchangeable proton spectra for HbNO in 0.1M bis-Tris buffer at various pH and pressures. At 1 atm and bis-Tris.

pH 6.7, the R state marker signal is observed at 6.0 ppm. With lowering pH to 5.9, the T state marker signals at 9.6 and 6.5 ppm grow up (10) and the R state resonance at 6.0 ppm is reduced, giving two state marker signals simultaneously at pH 5.9. Upon pressurization to 100 atm at pH 5.9, the T state signals at 9.6 and 6.5 ppm are reduced and eventually disappear 850 atm¹, at while the R state marker at 6.0 ppm remains unchanged under high pressure. This pressure-induced spectral change for the hydrogen in HbNO could be interpreted in terms of borded protons pressure-induced structural alterations characterized by the rupture of the hydrogen bond involved in the T conformation. This the hydrogen bond could be responsible for rupture of

This spectral change was irreversible with respect to the application and the release of pressure. All of other pressure-induced spectral changes described in this report were reversible.

disappearance of the exchangeable proton signal due to fast proton exchange with the solvent water proton. These results may allow us to suggest that for HbNO the R-T quaternary transition is not induced by pressure, but rather pressure affects the quaternary structure in such a fashion that the intersubunit hydrogen bond involved in the T structure is broken with the R structure remaining unperturbed.

pressure-dependence the Fig.3 illustrates the exchangeable proton resonances for deoxy des-Arg $(\alpha 141)$ -Hb at Нq 7.0 and 8.5 in 0.1M Tris-HCl buffer. Consistent with its T structure at neutral pH (15-17), two T state marker signals at and 6.2 ppm are observed at pH 7.0 and 1 atm. These two signals remain unchanged under high pressure, while exchangeable proton resonance at 7.4 ppm reduces its signal intensity. These observations indicate that pressure may perturb the subunit boundary structure with the T quaternary structure

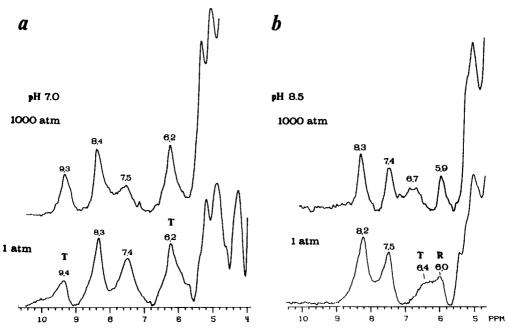


Figure 3 Pressure-dependence of the proton NMR spectra for deoxy des-Arg(α 141)-hemoglobin at 30°C, pH 7.0(a) and 8.5(b) in 0.1M Tris-HCl.

retained. At pH 8.5 and 1 atm, the R state marker signal at 6.0 is observed, in agreement with the well established results of the conversion of the protein to the R structure at (15-17). Upon pressurization at pH 8.5, the R state signal at 6.0 ppm remains unchanged, while the T tertiary structural marker 6.4 ppm exhibits slight downfield shift to 6.7 ppm². From above observations, pressure appears to perturb the tertiary structure of the β subunit in des-Arg(α 141)-Hb, as is manifested as a spectral shift of the T state marker signal at 6.4 ppm, but does not cause the R to T quaternary structural transition.

of The present finding pressure-induced quaternary structural alterations without accompanying the R to T transition $HbH_{2}O$, HbNO and deoxy $des-Arg(\alpha 141)-Hb$ is in sharp contrast to the case of HbO2, HbCO and deoxyHb in which R or T state predominates and each quaternary structure is pressure-resistant. In other words, the quaternary structure of Hb derivatives with R and T states in equilibrium is more susceptible to high pressure than those with R or T state predominated.

ACKNOWLEDGMENT. We thank Professor T. Yonezawa for continuing interest and encouragement. We also thank Dr. T. Inubushi for helpful disccusions.

REFERENCES

- (1)(a) Morishima, I., Ogawa, S., and Yamada, H. (1979) J. Am. Chem. Soc. 101, 7074-7076.
 - (b) Morishima, I., Ogawa, S., and Yamada, H. (1980) Biochemistry 19, 1569-1575.
 - (c) Morishima, I., and Hara, M. (1982) J. Am. Chem. Soc. 6833-6834.
- (d) Morishima, I., and Hara, M. (1983) Biochemistry 22, 4102-4107. (2)
- Morishima, I., and Hara, M. (1983) J. Biol Chem. 258,14428-14432 Rein, H., Ristau, O., and Scheler, W. (1972) FEBS Lett. 24, (3)24 - 36.

also examined the effect of pressure on tertiary structure of deoxy des-Arg $(\alpha 141)$ -Hb at pH 7.0 and 8.5. The hyperfine-shifted heme and proximal hystidyl NH resonances were almost pressure independent.

- Trittelvitz, E., Sich, H., and Gersonde, K. (4)(1972) Eur. J. Biochem. 31, 578-584.
- (5)Perutz, M. F., kilmartin, J. V., Nagai, K., Szabo, A., and Simon, S. F. (1976) Biochemistry 15, 378-387.
- Chevion, M., Stern, A., Peisach, J., Blumberg, W. G., (6) Simon, S. (1978) Biochemistry 17, 1745-1750.
- (7)
- Salhany, J. M. (1974) FEBS Lett. 49, 84-86. Moore, G. G., and Gibson, Q.H. (1976) and Gibson, Q.H. (1976) J. Biol. Chem. 251, (8)2788-2794.
- Ogawa, S., and (9) Salhanv, J. M., Schulman, R.G. (1975)Biochemistry 14, 2180-2190.
- (10)Huang, T.-H. (1979) J. Biol. Chem. 254, 11467-11474.
- (11)Fung, L. W.-M., and Ho, C. (1975) Biochemistry 14, 2526-2535.
- Kilmartin, J. V. (1973) Biochem. J. 133, 725-732. (12)
- Perutz, M. F., Simon, S. R., Fersht, A. R., (13)Robertz, G. C. K. (1974) Biochemistry 13, 2174-2186.
- Perutz, M. F., Heidner, E. J., (14)Ladner, J. E., Bettlestone, J. G., Ho, C., and Slade, E. F. Biochemistry 13, 2187-2200.
- Kilmartin, J. V., Hewitt, J. A., and Wotton, J. F. (1975) J. (15)Mol. Biol. 93, 203-218.
- Ogawa, S., Patel, D. J., and Simon, R. (1974) Biochemistry 13, (16)2001-2006.
- Jue, T., and (17)Nagai, K., La Mar, G. N., Bunn, H. F. (1982) Biochemistry 21, 842-847.
- Bermann, M., Benesch, R., and Benesch, R. E. (1971) (18)Arch. Biochem. Biophys. 145, 236-239.
- Newmann, R. C.Jr., Kauzmann, W., and Zipp, A. (1973) J. (19)Chem. 77, 2687-2691.
- Kornblatt, J. A., and Hoa, G. H. B. (1982) Biochemistry 21, (20)5439-5444.
- (21)Viggiano, G., Wiechelman, K. J., Chervenich, P. A., and Ho, C. (1978) Biochemistry 17, 795-799.